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We prove identities between integrated Ursell functions and derivatives of the 
pressure in the thermodynamic limit, for multicomponent classical spin systems 
which obey the Lee-Yang theorem and some form of Gaussian domination, 
when the susceptibility is finite (T>  T~). Following Refs. 3 and 4, we view the 
moment generating function of the magnetization as the inverse of an infinitely 
divisible characteristic function. Fluctuation susceptibility relations of all orders 
then follow by bounding the corresponding cumulants, taken in zero externat 
field. High-order cumulants are bounded in terms of the susceptibility using 
Gaussian and Simon's inequalities for short-range interactions. 

KEY WORDS:  Fluctuation susceptibility relations; Lee-Yang; infinitely 
divisible distribution; mass gap. 

1. I N T R O D U C T I O N  

As already pointed out in Ref. 1, a remarkable consequence of the 
Lee-Yang theorem is the proof of "fluctuation susceptibility relations" at 
nonzero external field, i.e., that the finite volume cumulants of the 
magnetization variable converge to the corresponding derivatives of the 
pressure, when the external field is nonzero. The proof extends to zero 
external field only when there is a "Lee-Yang gap," but the existence of this 
gap has been established only for high enough temperatures ~2) and for 
some particular models. 

Although the critical temperature could be defined as the temperature 
where the Lee-Yang gap vanishes, it is more usual to define it as the tern- 
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perature where the susceptibility diverges. One may then wonder if the fluc- 
tuation susceptibility relations hold at zero external field for temperatures 
such that the susceptibility is finite. 

This question has been addressed previously by various authors. (5-s~ A 
crucial ingredient, for dominated convergence arguments, is to obtain 
bounds uniformly in a neighborhood of h = 0. Lebowitz (s) gave an answer 
to this problem by first bounding the n-point Ursell functions, for arbitrary 
h, in terms of the two-point function at the same value of h (by F K G  
inequalities), and then bounding the two-point function at h ~ 0  by the 
same function at h = 0 (by the GHS inequality). 

Our method follows a different path: we use a consequence of the 
Lee-Yang theorem, for all integrated Ursell functions altogether, to reduce 
the problem from h r 0 to h = 0, and then use Gaussian inequalities to 
bound n-point Ursell functions at h = 0 by the two-point function at h = 0. 
The first step is essentially the fact, established in Refs. 3 and 4, that 
integrated Ursell functions are (minus) the derivatives of the logarithm of a 
characteristic function (Fourier transform of a positive measure). This 
involves dividing by the volume, and is possible for infinitely divisible dis- 
tributions. 

This method has the advantage to apply also to two- or three-com- 
ponent spins for which F K G  inequalities do not exist. The lengths of the 
spins may be unity (Ising, classical Heisenberg model) or continuous ran- 
dom variables (e.g., [q~[4 models). The geometry of the lattice is arbitrary. 

2. MODELS AND NOTATION 

Consider the family of finite-volume Gibbs states given by 

d#~'h((~i)J~A) = ZAI(/~' h) exp {fl/~, A Jijai" ~/+h k~a ~ alk}j~AdV(~J) (1) 

where 
A ~ 7/ a, f l > 0  

(2) 
Jij=J(i-J)>~ O, ~ J i j  < 0 0  

j E z  d 

and where the free spin distribution v(~) is a positive measure on NN, 
N =  1, 2, or 3, which is rotation invariant and satisfies 

f exp(b~ 2) dv(~) < oo ~ (3) Vb 

r 0 ~ ( exp(ha ~ ) dv(g) • 0 (4) Re h 
J 
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If N = 3, we require explicitly 

o r  
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dv(~) = (~(62 _ 1 ) d30 (5) 

dv((~) = e x p ( - 2  1(~14-t-~ l~t2) d30 -, 2 > 0 ,  ~tE ~ (6) 

These conditions ensure (19 211 the validity of the Lee-Yang theorem. 
(2) and (3) imply that the partition function is an entire function of h of 
order at most two, with some uniformity in A: 

[ZA( fl, h)l < c e  ~'lAI Ih12 (7) 

Let us now introduce the finite-volume pressure PA(fl, h), the finite- 
volume difference of pressures OA(fl, h), and the finite-volume cumulants 

A U, (fl, h), n = 1, 2,...: 

PA(fi, h) = {AI-1 log Z~(fi, h) 

DA(fl, h) = P A(fl, h) -- P A(fl, O) 

u~(p, h)=-g-~ P ~(p, h)=T#; D ~(~, h) 

As A 7 7/d, when the corresponding limit exists, we denote 

P(fi, h ) =  lim PA(fl, h) 
A ,~ Z d 

D(fl, h ) =  lim DA(B, h) 
A / ~ Z  d 

d" 
U.(fi, h ) = ~ ;  D(fi, h) 

3. R E S U L T S  

For simplicity, we first give a theorem based only on the Lee-Yang 
Theorem and its consequences. Theorem 2 will use Gaussian inequalities 
and Simon's inequality to remove the hypothesis on U2A,(fi, 0) for n > 1. The 
hypothesis on Uz(fi, 0) in the (necessary) condition T >  Tc. 

T h e o r e m  1. Consider the model defined by Eqs. 1-6 and suppose 
that 

Sup ]UAp(fl, 0)l < 0% p = 1, 2,..., n (8) 
A 
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Then D(fl, h) is at least 2n times differentiable with respect to h, in par- 
ticular at h = 0. The finite-volume cumulants of order up to 2n converge as 
A ~ 7/a to the corresponding derivatives of D(fl, h). 

Proof. The proof of the convergence of U~(fl, h) and of the fluc- 
tuation susceptibility relations (or sum rules (6)) is based on the con- 
vergence of Dx(fl, h), viewed as minus the logarithm of the characteristic 
function of an infinitely divisible distribution. (3'4) We sketch the method for 
completeness. 

As derived in Ref. 12, the Hadamard representation of an even entire 
function, of order at most 2, with pure imaginary zeros leads to 

oO 

ZA(fl, h)/ZA(fl, 0) = exp(bh 2) l~ (1 + h2/h~) (9) 

Each factor on the right-hand side of this expression is precisely the 
inverse of an infinitely divisible characteristic function. This implies the 
same property for the product, as well as for the 1/IA [ root. That is to say, 
that there exists an infinitely divisible distribution function FA(x) such that 

lj 'A' 1 

ZA(fi, O)J =~exp(ihx)dFA(X) (10) 

Since 

{ZA(fl, h)/Zi(fl, 0)} 1/Ixl = exp[-DA(fl, h)] 

one indeed obtains that the finite-volume difference of pressures OA(fl, h) 
may be viewed as minus the logarithm of an infinitely divisible charac- 
teristic function. The infinite volume limit of PA(fl, h), and consequently of 
OA(fl, h), with free boundary conditions as in (1) is easy using (7) and, e.g., 
the first Griffiths inequality. The limit is continuous in h because it is con- 
vex in h. 

The well-known L6vy theorem (14/ ensures that a function, continuous 
at the origin, which is the limit of a sequence of characteristic functions is 
itself a characteristic function. The corresponding sequence of probability 
distributions (FA(x))A converges then weakly to the probability dis- 
tribution, say, F(x), of the limiting characteristic function. 

In order to prove that the successive derivatives of DA( fl, h) taken at 
zero external field converge, as A 1" 7/d, to those of D(fl, h) one only has to 
prove that the sequence of cumulants of (FA(X))A converge, as A T 7/d, to 
the cumulants of F(x). But we have proved that (FA(X))A converges weakly 
to F(x). The corresponding convergence of the cumulants of FA(X) or the 
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equivalent fluctuation-susceptibility relations (or sum rules) now follow 
easily from the dominated convergence theorem, provided the moments of 
FA(X ) of degree up to 2n are uniformly bounded. The desired bounds 
follow from (8) and H61der's inequality. 

This concludes the proof of theorem 1. | 

Remark. The bounds for UAp(fl, 0), 1 < p < n, follow (3'4) from the 
bounds for uA(fl, 0) and UA,(fl, O) 

T h e o r e m  2. Consider the models defined by Eqs. 1-6 where for 
N =  1, 2 we suppose in addition that 

dv((~)=e ~'(~2)d(L v convex (11) 

or a limit of such measures or a measure constructed out of (11) by the 
analog spin method of Griffiths. 

Assume, for some a > 0, 

Jij  < e - a l i  Jr, 

and 

i r  (12) 

Sup uA(/~, 0) < ~ (13) 
A 

Then D(fi, h) is C ~ in h and the finite-volume cumulants of all orders 
converge as A/ '  Z a to the corresponding derivatives of D(/~, h). 

Proof. Using the method developed in Theorem 1, we only have to 
construct bounds independent of the volume for the cumulants. The 
bounds are obtained by combining the next two lemmas. 

We first need some notations: for A a set of indices in 7/d, we denote 

i~A 

and ( a ~ )  A will be the expectation of a~ in the probability measure (1). 
The Ursell functions for the first component of the spin are defined induc- 
tively by 

Y, 1-[ 
7z ~ .~({ l , . . . ,n  }) ~ 

where ~ ({  1 ..... n }) is the set of partitions of { 1,..., n }. The Ursell functions 
are related to the cumulants by 

1 u,,(xl x.)  Z ' 

xI~A 
Xn ~" A 
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kemma 1.(9 11) Consider a classical spin system defined by Eqs. (1) 
and (2) with h = 0  and (5) and (6) or (11). Assume (12) and (13). Then 
there is a mass gap, i.e., 3m > 0 and c such that 

u2( i, j)  < c e x p ( - m  [ i - j [ )  

Proof. Our formulation differs slightly from the results of Refs. 9-11. 
A direct proof follows the proof of Corollary 4.2 in Ref. 9. One should find 
a volume f2 c g d, f2 ~ i, and a constant a > 0, such that 

") Z"  ~176 <'  <,4) 
\ k ~ l E g 2  

We first choose a volume t-2~ ~ i such that )1 
Z u2( i, l)<�89 Jik eal'-kl 

l ~ ~Cl 

This is possible because the susceptibility is finite. We then choose 
~ g21 such that 

( )' ~ e adist(l'~C)u2(i, l)<�89 2J, e 
l ~ l  

Then ~2--f2~ u (~\Q~) satisfies (14). The rest of the proof is as in Ref. 9. 

I_emma 2. (5) Consider a classical spin system defined by Eqs. (1) 
and (2) with h = 0  and (5) and (6) or (12). Suppose 3cp independent of 
A , p = 0 , 1 , 2  .... such that 

IA[- '  ~ t x - - y lpuA(x , y )<cp ,  p = 0,1, 2,... (15) 
x , y ~ A  

Then 3dn independent of A, n = 1, 2 .... such that 

I U~,(fl, 0)] < d, (16) 

ProoL Our hypotheses ( ~  Gaussian inequalities (15'16'22)) differ from 
Lebowitz's ( ~  F K G  inequalities), but the idea is essentially the same. We 
first prove a bound on the Ursell function u~,(xl,..., x2,). 
Let 

d(xl,..., x2,)= Max Min ]xi--x;[ (17) 
{ 1 , . . . , 2 n } - - A ~ B  i ~ A  

j ~ B  
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Then 3b, independent of A such that 

]uA,,(Xl ..... X2n)] < b, Max uA(x~, Xj) (18) 
i . j  

Ixi-- xj/ /> d(xl,...,x2,J 

This may be proven using Gaussian inequalities. 
Let us now label xl ,  x2 the two points giving the Max in (18). In 

order to sum over x3""x2n ,  we can construct a tree graph connecting 
x ~ " . x 2 , ,  all segments of which satisfy 

Ixk -  xtl ~ IXl-X21 (19) 

This choice of a tree graph depends on the configuration, but we 
include the number of choices and their overlap in the constant dR. It 
follows that 

IUS~(/~,0)I~IAI-1 ~ '  , A bn L/2 (X 1 , X2)  
I x k -  xll ~< Ix1 -x21  

where Z '  is subject to a given tree graph. Summation over x3""  
starting from the end points of the graph, gives 

X 2 n  

/t tr Ig2n(/3,0)l~lAI -1 ~ bn l X l - - X 2 1  (2n 2 ) d l . 1 2 ( X l , X 2 )  

XI,X 2 ~ A 

Hypothesis (15) concludes the proof of the lemma. 

Remark. What is really wanted, in place of Lemma 2, is skeleton 
inequalities for all Ursell functions, which would give 

IuL(0,/?)1 ~ c"(2n)! [UA(0,/~)]q" (20) 

with c and q independent of A. This would allow to suppress the short- 
range interactions hypothesis in Theorem 2. 

Appropriate skeleton inequalities have been proven for n = 2  by 
Aizenman (iv) and by Brydges, Fr6hlich, Sokal. (181 Fluctuation suscep- 
tibility relations are thus proven up to the fourth cumulant when the sus- 
ceptibility is finite regardless of the range of the interactions. 
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